Abstract

Abstract Whenever oxygen systems are assembled or maintained, a risk of introducing contamination arises. Potential contaminants include oils from a person's hands and body left behind in the form of fingerprints. The oil on the surface of skin is a complex mixture of sebum oil, lipids, sweat, and environmental materials. In high-pressure systems, heat from rapid pressurization is a high-risk ignition mechanism for the sebum contaminant. The rapid pressurization or pneumatic impact ignition of hydrocarbon-based oil contaminant in high-pressure oxygen has been widely studied. This study investigated the rapid pressurization ignition of sebum contaminant in high-pressure oxygen. The pneumatic impact ignition test of sebum contaminant was conducted according to NASA-STD-6001 Test 14. The ends of stainless steel cylindrical rods were coated with synthetic sebum at varying surface concentrations, and impacted with 27.6 MPa oxygen. The results show that there is a threshold level of sebum contaminant for ignition by rapid pressurization. The level of sebum contaminant that can be expected to be deposited by handling oxygen system components, an analysis on sebum oil properties and associated fire hazards, and the threshold levels of sebum contaminant required for rapid pressurization ignition in a high-pressure oxygen system are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.