Abstract

Abstract STEM-EBIC imaging, a nano-characterization technique, has been used in the study of electrically active defects, minority carrier diffusion length, surface recombination velocity, and inhomogeneities in Si pn junctions. In this article, the authors explain how they developed and built a STEM-EBIC system, which they then used to determine the junction location of an InGaN quantum well LED. They also developed a novel FIB-based sample preparation method and a custom sample holder, facilitating the simultaneous collection of Z-contrast, EBIC, and energy dispersive spectroscopy images. The relative position of the pn junction with respect to the quantum well was found to be 19 ± 3 nm from the center of well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.