Abstract

In this paper the study describes a single-stage, self-contained solar photovoltaic (SPV) array-fed, permanent magnet synchronous motor water pumping system (PMSM). The two main contributions of this research are i) the development of a novel modified vector control (MVC) that improves the system's torque behaviour and (ii) the development of a special incremental conductance with variable step size (VSS-INC) with a stage technique that results in a rapid response. Maximum Power Point Tracking (MPPT) is offered, a DC-DC converter between stages is not required, and (iii) the system's overall response time under dynamic conditions is enhanced with the use of an SPV Power Feed Forward Term (FFT). A pump, a three-phase voltage source inverter (VSI), a PMSM, and an SPV array are among the parts of this system. Solar energy is transformed into electrical energy by the SPV array. The VSI performs the role of a power processing unit (PPU), supplying the necessary power to drive the PMSM. The motor-coupled pump completes the task of pumping water while the PMSM rotates. The provided empower system toolbox is used with MATLAB/Simulink to model and simulate this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.