Abstract
Elucidating the molecular basis of tumor metastasis is pivotal for eradicating cancer-related mortality. Triple-negative breast cancer (TNBC) encompasses a class of aggressive tumors characterized by high rates of recurrence and metastasis, as well as poor overall survival. Here, we find that the promyelocytic leukemia protein PML exerts a prometastatic function in TNBC that can be targeted by arsenic trioxide. We found that, in TNBC patients, constitutive HIF1A activity induces high expression of PML, along with a number of HIF1A target genes that promote metastasis at multiple levels. Intriguingly, PML controls the expression of these genes by binding to their regulatory regions along with HIF1A. This mechanism is specific to TNBC cells and does not occur in other subtypes of breast cancer where PML and prometastatic HIF1A target genes are underexpressed. As a consequence, PML promotes cell migration, invasion, and metastasis in TNBC cell and mouse models. Notably, pharmacological inhibition of PML with arsenic trioxide, a PML-degrading agent used to treat promyelocytic leukemia patients, delays tumor growth, impairs TNBC metastasis, and cooperates with chemotherapy by preventing metastatic dissemination. In conclusion, we report identification of a prometastatic pathway in TNBC and suggest clinical development toward the use of arsenic trioxide for TNBC patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.