Abstract
Natural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). In this work, morphological changes in PML-NBs and alterations in PML protein localization at the transition of primary fibroblasts to a replicative senescent state were studied by immunofluorescence. The fibroblasts were obtained from both healthy donors and donors with premature aging syndromes (ataxia-telangiectasia and Cockayne syndrome). Our data showed an increase in both the size and the number of PML-NBs, along with nuclear enlargement in senescent cells, suggesting these changes could serve as potential cellular aging markers. Bioinformatic analysis demonstrated that 30% of the proteins in the PML interactome and ~45% of the proteins in the PML-NB predicted proteome are directly associated with senescence and aging processes. These proteins are hypothesized to participate in post-translational modifications and protein sequestration within PML-NBs, thereby influencing transcription factor regulation, DNA damage response, and negative regulation of apoptosis. The findings confirm the significant role of PML-NBs in cellular aging processes and open new avenues for investigating senescence mechanisms and age-associated diseases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.