Abstract

AbstractCapacitors are widely used as energy storage elements in electric vehicles (EVs) and pulsed power. At present, it is still challenging to develop capacitor dielectrics with good energy storage and discharge performance. In this work, antiferroelectric (AFE) ceramics (Pb0.94La0.04)[(Zr0.6Sn0.4)0.92Ti0.08]O3 with enhanced antiferroelectricity were fabricated by a rolling process. The obtained ceramics have a high recoverable energy density of 5.2 J/cm3 and an extremely high efficiency of 91.2% at 327 kV/cm. The ceramics have good energy storage and discharge performance in the temperature range from −40°C to 100°C due to the existence of AFE phase. An energy density of 3.7 J/cm3 can be released at 200 kV/cm in less than 500 ns and the discharge current keeps stable after 1000 charge‐discharge cycles. By direct short experiment, a current density of 1657 A/cm2, which is the highest result in recently developed AFE ceramics, and a power density of 228 MW/cm3 were achieved. The possibility of using AFEs at low temperature was confirmed. The excellent energy storage and discharge performance prove the great potential of the obtained ceramics in high energy and power density applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.