Abstract

Advances in nuclear power reactors include the use of mixed oxide fuel, containing uranium and plutonium oxides. The high-temperature behaviour and structure of PuO2-x above 1,800 K remain largely unexplored, and these conditions must be considered for reactor design and planning for the mitigation of severe accidents. Here, we measure the atomic structure of PuO2-x through the melting transition up to 3,000 ± 50 K using X-ray scattering of aerodynamically levitated and laser-beam-heated samples, with O/Pu ranging from 1.57 to 1.76. Liquid structural models consistent with the X-ray data are developed using machine-learned interatomic potentials and density functional theory. Molten PuO1.76 contains some degree of covalent Pu-O bonding, signalled by the degeneracy of Pu 5f and O 2p orbitals. The liquid is isomorphous with molten CeO1.75, demonstrating the latter as a non-radioactive, non-toxic, structural surrogate when differences in the oxidation potentials of Pu and Ce are accounted for. These characterizations provide essential constraints for modelling pertinent to reactor safety design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.