Abstract

Machine learning (ML) interatomic potentials (ML-IAPs) are generated for alkane and polyene hydrocarbons using on-the-fly adaptive sampling and a sparse Gaussian process regression (SGPR) algorithm. The ML model is generated based on the PBE+D3 level of density functional theory (DFT) with molecular dynamics (MD) for small alkane and polyene molecules. Intermolecular interactions are also trained with clusters and condensed phases of small molecules. It shows excellent transferability to long alkanes and closely describes the ab inito potential energy surface for polyenes. Simulation of liquid ethane also shows reasonable agreement with experimental reports. This is a promising initiative toward a universal ab initio quality force-field for hydrocarbons and organic molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.