Abstract

AbstractThe thermal and chemical evolution of rocky planets is controlled by their surface tectonics and magmatic processes. On Earth, magmatism is dominated by plutonism/intrusion versus volcanism/extrusion. However, the role of plutonism on planetary tectonics and long‐term evolution of rocky planets has not been systematically studied. We use numerical simulations to systematically investigate the effect of plutonism combined with eruptive volcanism. At low‐to‐intermediate intrusion efficiencies, results reproduce the three common tectonic/convective regimes as are usually obtained in simulations using a viscoplastic rheology: stagnant‐lid (a one‐plate planet), episodic (where the lithosphere is usually stagnant and sometimes overturns into the mantle), and mobile‐lid (similar to plate tectonics). At high intrusion efficiencies, we observe a new additional regime called “plutonic‐squishy lid.” This regime is characterized by a set of small, strong plates separated by warm and weak regions generated by plutonism. Eclogitic drippings and lithospheric delaminations often occur close to these weak regions, which leads to significant surface velocities toward the focus of delamination, even if subduction is not active. The location of the plate boundaries is strongly time dependent and mainly occurs in regions of magma intrusion, leading to small, ephemeral plates. The plutonic‐squishy‐lid regime is also distinctive from other regimes because it generates a thin lithosphere, which results in high conductive heat fluxes and lower internal mantle temperatures when compared to a stagnant lid. This regime has the potential to be applicable to the Early Archean Earth and present‐day Venus, as it combines elements of both protoplate tectonic and vertical tectonic models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.