Abstract

Genes are attractive candidates as therapeutic agents, and the development of safe and effective gene carriers is essential for the success of human gene therapy. To develop a gene delivery vector that shows low cytotoxicity and high efficiency, we synthesized poly-L-lysine-g-pluronic by conjugating poly-L-lysine (PLL) to pluronic, which is partially functionalized with para-nitrophenyl carbonate groups, and evaluated for its efficiency as a possible nonviral gene carrier candidate. Structural analysis of synthesized polymer was performed by using 1H-NMR. Gel retardation assay, zeta potential and size measurement confirmed that the new gene carrier made a compact complex with plasmid DNA. pCMV-beta-gal was used as a reporter gene, and the in vitro transfection efficiency was measured in HeLa cells by using the o-nitrophenyl-beta-D-galactopyranoside assay. The highest transfection efficiency among those tested was achieved at the 1:1 weight ratio of polymer:DNA, and a 3-fold increase in transfection efficiency was achieved by treatment of a lysosomotropic agent, chloroquine. Compared with unmodified PLL, PLL-g-pluronic showed about 2-fold increase in transfection efficiency with similar cytotoxicity specifically at the 1:1 weight ratio of polymer:DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call