Abstract

In 2010, Multilineage Differentiating Stress Enduring (Muse) cells were introduced to the scientific community, offering potential resolution to the issue of teratoma formation that plagues both embryonic stem (ES) and induced pluripotent (iPS) stem cells. Isolated from human bone marrow, dermal fibroblasts, adipose tissue and commercially available adipose stem cells (ASCs) under severe cellular stress conditions, Muse cells self-renew in a controlled manner and do not form teratomas when injected into immune-deficient mice. Furthermore, Muse cells express classic pluripotency markers and differentiate into cells from the three embryonic germ layers both spontaneously and under media-specific induction. When transplanted in vivo, Muse cells contribute to tissue generation and repair. This review delves into the aspects of Muse cells that set them apart from ES, iPS, and various reported adult pluripotent stem cell lines, with specific emphasis on Muse cells derived from adipose tissue (Muse-AT), and their potential to revolutionize the field of regenerative medicine and stem cell therapy.

Highlights

  • In 2010, Multilineage Differentiating Stress Enduring (Muse) cells were introduced to the scientific community, offering potential resolution to the issue of teratoma formation that plagues both embryonic stem (ES) and induced pluripotent stem cells

  • Muse cells isolated from adipose tissue can be obtained from commercially available human adipose stem cells (ASCs) through stage-specific embryonic antigen-3 (SSEA-3) cell sorting [27]. Much like their relatives derived from bone marrow aspirates and skin fibroblasts [24], Muse cells derived from adipose tissue (Muse-AT) cells grow in suspension as cell clusters, similar to embryoid bodies, which express the classic pluripotency markers SSEA3, Sox2, Oct3/4, Nanog, and TRA1-60 [24,26] (Figure 2)

  • Perhaps most thrillingly, Muse cells could be harvested for the purposes of creating autologous stem cell banks

Read more

Summary

Introduction

In 2010, Multilineage Differentiating Stress Enduring (Muse) cells were introduced to the scientific community, offering potential resolution to the issue of teratoma formation that plagues both embryonic stem (ES) and induced pluripotent (iPS) stem cells. Human marrow-isolated adult multilineage inducible (MIAMI) cells and very small embryonic-like stem cells (VSELs), isolated from umbilical cord blood in addition to bone marrow, were soon to follow, exhibiting similar pluripotent and non-tumorigenic properties [17,18,19]. Isolated from bone marrow aspirates and human skin fibroblasts, this cell population expresses the pluripotency marker stage-specific embryonic antigen-3 (SSEA-3) as well as the mesenchymal cell marker CD105 [24,25].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call