Abstract
Fifty percent of advanced stage ER-positive breast cancer patients develop endocrine resistance. Aberrant activation of Wnt/β-catenin is associated with stem-like phenotypes and epithelial-mesenchymal transition (EMT) process which confers resistance to endocrine therapy. Cancer stem-like cells (CSLCs) can be a vital source of proangiogenic factors including fibroblast growth factor 2 (FGF2) which drives angiogenesis and leads to tumor growth and metastasis. Therefore, targeting Wnt and FGF2 may provide effective treatment for endocrine resistant breast cancer. Our previous in vitro study reported that plumbagin (PLB) was a potent anticancer agent and was able to inhibit EMT in endocrine-resistant cells. This study aimed to further investigate the inhibitory effects of PLB on cancer stem-like phenotypes, tumorigenicity and angiogenesis. The results demonstrated Wnt/β-catenin signaling was activated and was able to form mammospheres with increased cancer stem cell markers (ALDH1, NANOG, and OCT4) in endocrine-resistant cells. PLB significantly inhibited colony-forming, mammosphere formation and decreased cancer stem cell markers. The inhibitory effects of PLB on cell proliferation and invasion were mediated by Wnt signaling pathway. PLB also significantly reduced Wnt responsive genes and β-catenin. Moreover, PLB treatment at doses of 2 and 4 mg/kg/day inhibited tumor growth, angiogenesis and metastasis without any adverse effects on body weight and blood coagulation in orthotopic xenograft nude mice. In conclusion, PLB exerted anti-cancer activity and eliminated stem-like properties by attenuating Wnt/β-catenin signaling and FGF2 expression. These findings suggest that PLB could be a promising agent to treat endocrine resistant breast cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have