Abstract

Satellite networks are vital in facilitating communication services for various critical infrastructures. These networks can seamlessly integrate with a diverse array of systems. However, some of these systems are vulnerable due to the absence of effective intrusion detection systems, which can be attributed to limited research and the high costs associated with deploying, fine-tuning, monitoring, and responding to security breaches. To address these challenges, we propose a pre-trained Large Language Model for Cyber Security, for short PLLM-CS, which is a variant of pre-trained Transformers, which includes a specialized module for transforming network data into contextually suitable inputs. This transformation enables the proposed LLM to encode contextual information within the cyber data. To validate the efficacy of the proposed method, we conducted empirical experiments using two publicly available network datasets, UNSW_NB 15 and TON_IoT, both providing Internet of Things (IoT)-based traffic data. Our experiments demonstrate that proposed LLM method outperforms state-of-the-art techniques such as BiLSTM, GRU, and CNN. Notably, the PLLM-CS method achieves an outstanding accuracy level of 100% on the UNSW_NB 15 dataset, setting a new standard for benchmark performance in this domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.