Abstract

We recently demonstrated that immunization with polyester poly(lactide-co-glycolide acid) (PLGA) nanoparticles loaded with the 11-kDa Leishmania vaccine candidate kinetoplastid membrane protein 11 (KMP-11) significantly reduced parasite load in vivo. Presently, we explored the ability of the recombinant PLGA nanoparticles to stimulate innate responses in macrophages and the outcome of infection with Leishmania braziliensis in vitro. Incubation of macrophages with KMP-11-loaded PLGA nanoparticles significantly decreased parasite load. In parallel, we observed the augmented production of nitric oxide, superoxide, TNF-α and IL-6. An increased release of CCL2/MCP-1 and CXCL1/KC was also observed, resulting in macrophage and neutrophil recruitment in vitro. Lastly, the incubation of macrophages with KMP-11-loaded PLGA nanoparticles triggered the activation of caspase-1 and the secretion of IL-1β and IL-18, suggesting inflammasome participation. Inhibition of caspase-1 significantly increased the parasite load. We conclude that KMP-11-loaded PLGA nanoparticles promote the killing of intracellular Leishmania parasites through the induction of potent innate responses. From the Clinical EditorIn this novel study, KMP-11-loaded PLGA nanoparticles are demonstrated to promote the killing of intracellular Leishmania parasites through enhanced innate immune responses by multiple mechanisms. Future clinical applications would have a major effect on our efforts to address parasitic infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call