Abstract

The pleural space plays an important role in respiratory function as the negative intrapleural pressure regimen ensures lung expansion and in the mean time maintains the tight mechanical coupling between the lung and the chest wall. The efficiency of the lung-chest wall coupling depends upon pleural liquid volume, which in turn reflects the balance between the filtration of fluid into and its egress out of the cavity. While filtration occurs through a single mechanism passively driving fluid from the interstitium of the parietal pleura into the cavity, several mechanisms may co-operate to remove pleural fluid. Among these, the pleural lymphatic system emerges as the most important one in quantitative terms and the only one able to cope with variable pleural fluid volume and drainage requirements. In this review, we present a detailed account of the actual knowledge on: (a) the complex morphology of the pleural lymphatic system, (b) the mechanism supporting pleural lymph formation and propulsion, (c) the dependence of pleural lymphatic function upon local tissue mechanics and (d) the effect of lymphatic inefficiency in the development of clinically severe pleural and, more in general, respiratory pathologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.