Abstract
ObjectivesTo analyze the ability of pleth variability index (PVI) and respiratory system compliance (RSC) on evaluating the hemodynamic and respiratory effects of positive end expiratory pressure (PEEP), then to direct PEEP settings in mechanically ventilated critical patients.MethodsWe studied 22 mechanically ventilated critical patients in the intensive care unit. Patients were monitored with classical monitor and a pulse co-oximeter, with pulse sensors attached to patients’ index fingers. Hemodynamic data [heart rate (HR), perfusion index (PI), PVI, central venous pressure (CVP), mean arterial pressure (MAP), peripheral blood oxygen saturation (SPO2), peripheral blood oxygen content (SPOC) and peripheral blood hemoglobin (SPHB)] as well as the respiratory data [respiratory rate (RR), tidal volume (VT), RSC and controlled airway pressure] were recorded for 15 min each at 3 different levels of PEEP (0, 5 and 10 cmH2O).ResultsDifferent levels of PEEP (0, 5 and 10 cmH2O) had no obvious effect on RR, HR, MAP, SPO2 and SPOC. However, 10 cmH2O PEEP induced significant hemodynamic disturbances, including decreases of PI, and increases of both PVI and CVP. Meanwhile, 5 cmH2O PEEP induced no significant changes on hemodynamics such as CVP, PI and PVI, but improved the RSC.ConclusionsRSC and PVI may be useful in detecting the hemodynamic and respiratory effects of PEEP, thus may help clinicians individualize PEEP settings in mechanically ventilated patients.
Highlights
Post end expiratory pressure (PEEP) reduces the collapse of alveoli during the expiratory phases due to its effect on functional residual capacity, which provides great support during mechanical ventilation in certain pathophysiological progress, such as severe pneumonia, atelectasis, ARDS, heart failure and pulmonary edema (Max et al 1997)
In this study we investigated the effects of increasing positive end expiratory pressure (PEEP) from 0 to 5 to 10 cmH2O on a novel parameter pleth variability index (PVI), a non-invasive hemodynamic indicator to help optimize PEEP settings in ventilated patients
This study was designed to explore the impact of PEEP on PVI and respiratory system compliance, elucidating how positive intra-thoracic pressure may affect hemodynamic and respiratory physiology, to help clinicians optimize PEEP settings during mechanical ventilation
Summary
Post end expiratory pressure (PEEP) reduces the collapse of alveoli during the expiratory phases due to its effect on functional residual capacity, which provides great support during mechanical ventilation in certain pathophysiological progress, such as severe pneumonia, atelectasis, ARDS, heart failure and pulmonary edema (Max et al 1997). PVI has been proved to be a proper indicator in monitoring hemodynamic changes in mechanically ventilated. Zhou and Han SpringerPlus (2016)5:1371 patients, which is noninvasive, with good precision (Desebbe et al 2010). It is calculated with the dynamic variations of perfusion index (PI) during respiratory cycle (DeBarros et al 2015). This study was designed to explore the impact of PEEP on PVI and respiratory system compliance, elucidating how positive intra-thoracic pressure may affect hemodynamic and respiratory physiology, to help clinicians optimize PEEP settings during mechanical ventilation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.