Abstract

BackgroundLong non-coding RNAs (lncRNAs) are RNA transcripts of more than 200 nucleotides that do not encode canonical proteins. Their biological structure is similar to messenger RNAs (mRNAs). To distinguish between lncRNA and mRNA transcripts quickly and accurately, we upgraded the PLEK alignment-free tool to its next version, PLEKv2, and constructed models tailored for both animals and plants.ResultsPLEKv2 can achieve 98.7% prediction accuracy for human datasets. Compared with classical tools and deep learning-based models, this is 8.1%, 3.7%, 16.6%, 1.4%, 4.9%, and 48.9% higher than CPC2, CNCI, Wen et al.’s CNN, LncADeep, PLEK, and NcResNet, respectively. The accuracy of PLEKv2 was > 90% for cross-species prediction. PLEKv2 is more effective and robust than CPC2, CNCI, LncADeep, PLEK, and NcResNet for primate datasets (including chimpanzees, macaques, and gorillas). Moreover, PLEKv2 is not only suitable for non-human primates that are closely related to humans, but can also predict the coding ability of RNA sequences in plants such as Arabidopsis.ConclusionsThe experimental results illustrate that the model constructed by PLEKv2 can distinguish lncRNAs and mRNAs better than PLEK. The PLEKv2 software is freely available at https://sourceforge.net/projects/plek2/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.