Abstract
The Laacher See Event- (LSE-) volcanism isochrone of 12.850 yrs BP (Bujatti-Narbeshuber, 1997), proxy for P/H boundary KISS (Bujatti-Narbeshuber, 1996), was improved from Gerzensee varves to 13.034 cal yrs BP (Van Raden, 2019).    This LSE date now separates end Pleistocene, first, mainly oceanic-water KISS, from the second, Holocene-Younger Dryas Onset (YDO), continental-ice impact, as predicted by KISS-hypothesis, separating:„ a continental Koefels-comet ice-impact, from the mainly oceanic KISS, at the Pleistocene/Holocene boundary, associated with global warming, dendro C14 spikes, faunal mass extinction...“ (Bujatti-Narbeshuber, 1996; Max, 2022).    Oceanic-water LSE-KISS (13.034 cal yrs BP, varves) of end Alleroed temperature maximum, separates by 157 yrs from continental-ice YDO-KISS (12.877 cal yrs BP, varve-date). A larger gap of 184 yrs results, taking C 14 dated YD-KISS (12.850 cal yrs BP), approaching 200 yrs of earlier varve-studies (Bujatti-Narbeshuber, 1997).    LSE-KISS varve-date differs by 47 yrs from geo-magnetic Gothenberg Excursion Onset- (GEO-) isochrone of 13.081 cal yrs BP (Chen, 2020), suggesting geo-magnetic reversal, True Polar Wander (TPW) GEO-TPW-KISS from 2 Koefels-comet (Taurid-) fragments. This considers end-paleolithic Magdalenian Impact Sequelae Symbolisations (MISS).    Questioning P/H isostatic-unloading volcanism (Zielinsky, 1996), LSE-KISS volcanism is from Mid Atlantic Ridge & Mid Atlantic Plateau (MAR&MAP) impact (Bujatti-Narbeshuber, 1997, 2022), as further corroborated by Greenland (NGRIP) ice-core sulfate monitoring: from LSE-KISS-volcanism (12.978 cal yrs) to YDO (12.867 cal yr BP), within 110 yrs, an unprecedented, bipolar-volcanic-eruption-quadruplet resulted (Lin, 2022).    The first Taurid LSE-KISS (Varves-date: 13.034 cal yrs BP, GEO-date: 13.084 cal yrs BP.) into oceanic-water is evident from two 700 km Mid Atlantic Ridge & Plateau Lowering Events (MARPLES) releasing two separate Tsunamis (Bujatti-Narbeshuber, 2022): Resulting in submarine explosive-magmatism-silicates, seafloor-carbonates, volcanic-ash and sea-water in huge strato-meso-spheric overheated steam-plume moving eastward by eolian transport, descending in drowning rain-flood, largely contributing to Eurasian loess sediment layer (Muck, 1976).    This is stratigraphically verified in e.g. relative stratigraphic positions in Netherland, Geldrop-Aalsterhut, with Younger Coversand I, bleached (!) (AMS 13.080- 12.915 cal yrs BP) underlying intercalated (!), charcoal rich (AMS 12.785-12.650 cal yrs BP) Usselo Horizon (Andronikov, 2016). It corresponds to US, Black Mats stratigraphy from second Taurid, continental-ice, YD-KISS (12.850 cal yrs BP, C14) plus Carolina Bays (CB) with: 1. Soft, white, loess sediment from first oceanic LSE-KISS. 2. YD-KISS proxies-stratum. 3. e.g. Carolina-Florida-coast-sand-disturbances, within 1.500 km radius of continental-ice YD-KISS ice-ejecta impact-curtain of 500.000 CB (LIDAR) 4. Black Mats after YD-KISS.    After visiting Koefels-crater an “below continental-glacier-ice, circular geomagnetic-anomaly with paleoseismic Koefels-corridor of twelfe Holocene rockfalls”, Eugene Shoemaker (Vienna, May 5th 1997), when asked about Carolina Bays causation, is quoted: “Eugene spoke of a late Pleistocene origin of the Bays and as glaciological features while I preferred the paleoseismic interpretation. I interprete them as paleoseismic impact-seismic liquefaction features. They … are the first evidence for a late Pleistocene impact event. Dated by me …12.850 BP (1950) in calendar years”. (Bujatti-Narbeshuber, NHM letter to John Grant III, Sept. 22nd 1997).    Both P/H-impacts break&make, Pleistocene criticality&Holocene damped flow, through 700 km geomorphological threshold (GLOVES) submersion & through (GTT) water, CO2 Greenhouse-gas-production, beyond glaciation threshold for hot climate prediction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have