Abstract
In this paper, we show that equality in Courant's nodal domain theorem can only be reached for a finite number of eigenvalues of the Neumann Laplacian, in the case of an open, bounded and connected set in R n with a C 1,1 boundary. This result is analogous to Pleijel's nodal domain theorem for the Dirichlet Laplacian (1956). It confirms, in all dimensions, a conjecture formulated by Pleijel, which had already been solved by I. Polterovich for a two-dimensional domain with a piecewise-analytic boundary (2009). We also show that the argument and the result extend to a class of Robin boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.