Abstract

A nodal domain of a function is a maximally connected subset of the domain for which the function does not change sign. Courant's nodal domain theorem gives a bound on the number of nodal domains of eigenfunctions of elliptic operators. In particular, the k-th eigenfunction contains no more than k nodal domains. We prove a generalization of Courant's theorem to discrete graphs. Namely, we show that for the k-th eigenvalue of a generalized Laplacian of a discrete graph, there exists a set of corresponding eigenvectors such that each eigenvector can be decomposed into at most k nodal domains. In addition, we show this set to be of co-dimension zero with respect to the entire eigenspace.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.