Abstract
Accurate 3D object detection is essential for autonomous driving, yet traditional LiDAR models often struggle with sparse point clouds. We propose perspective-aware hierarchical vision transformer-based LiDAR-camera fusion (PLC-Fusion) for 3D object detection to address this. This efficient, multi-modal 3D object detection framework integrates LiDAR and camera data for improved performance. First, our method enhances LiDAR data by projecting them onto a 2D plane, enabling the extraction of object perspective features from a probability map via the Object Perspective Sampling (OPS) module. It incorporates a lightweight perspective detector, consisting of interconnected 2D and monocular 3D sub-networks, to extract image features and generate object perspective proposals by predicting and refining top-scored 3D candidates. Second, it leverages two independent transformers—CamViT for 2D image features and LidViT for 3D point cloud features. These ViT-based representations are fused via the Cross-Fusion module for hierarchical and deep representation learning, improving performance and computational efficiency. These mechanisms enhance the utilization of semantic features in a region of interest (ROI) to obtain more representative point features, leading to a more effective fusion of information from both LiDAR and camera sources. PLC-Fusion outperforms existing methods, achieving a mean average precision (mAP) of 83.52% and 90.37% for 3D and BEV detection, respectively. Moreover, PLC-Fusion maintains a competitive inference time of 0.18 s. Our model addresses computational bottlenecks by eliminating the need for dense BEV searches and global attention mechanisms while improving detection range and precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.