Abstract

AbstractTraceless transition metal catalysis (Pd, Ni, Cu, etc.) is very difficult to achieve. Metal contamination in the synthesized products is unavoidable and the most important questions are: How to control metal impurities? What amount of metal impurities can be tolerated? What is the influence of metal impurities? In this brief review, the plausible origins of nanoparticle contamination are discussed in the framework of catalytic synthesis of organic electronic materials. Key factors responsible for increasing the probability of contamination are considered from the point of view of catalytic reaction mechanisms. The purity of the catalyst may greatly affect the molecular weight of a polymer, reaction yield, selectivity and several other parameters. Metal contamination in the final polymeric products may induce some changes in the electric conductivity, charge transport properties, photovoltaic performance and other important parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.