Abstract

Truck platooning technology allows trucks to drive at short headways to save fuel and associated emissions. However, fuel savings from platooning are relatively small, so forming platoons should be convenient and associated with minimum detours and delays. In this paper, we focus on developing optimization technology to form truck platoons. We formulate a mathematical program for the platoon routing problem with time windows (PRP-TW) based on a time–space network. We provide polynomial-time algorithms to solve special cases of PRP-TW with two-truck platoons. Based on these special cases, we build several fast heuristics. An extensive set of numerical experiments shows that our heuristics perform well. Moreover, we show that simple two-truck platoons already capture most of the potential savings of platooning. History: Accepted by Pascal van Hentenryck, Area Editor for Computational Modeling: Methods and Analysis. Funding: This work was supported by the Netherlands Organization for Scientific Research (NWO) as part of the Spatial and Transport Impacts of Automated Driving [Grant 438-15-161] project. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2020.0302 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2020.0302 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call