Abstract

A new Pt monolayer electrocatalyst concept is described and the results of electrochemical and X-ray absorption spectroscopy (XAS) studies are presented. Two new methods that facilitate the application of this concept in obtaining ultra-low-Pt-content electrocatalysts have been developed. One is the electroless (spontaneous) deposition of a Pt submonolayer on Ru nanoparticles, and the other is a deposition of a Pt monolayer on Pd nanoparticles by redox displacement of a Cu adlayer. The Pt submonolayer on Ru (PtRu20) electrocatalyst demonstrated higher CO tolerance than commercial catalysts under conditions of rotating disk experiments. The long-term stability test showed no loss in performance over 870 h using a fuel cell operating under real conditions, even though the Pt loading was approximately 10% of that of the standard Pt loading. In situ XAS indicated an increase in d-band vacancy of deposited Pt, which may facilitate partly the reduced susceptibility to CO poisoning for this catalyst. The kinetics of O2 reduction on a Pt monolayer on Pd nanoparticles showed a small enhancement in comparison with that from a Pt nanoparticle electrocatalyst. The increase in catalytic activity is partly attributed to decreased formation of PtOH, as shown by XAS experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call