Abstract

Artificial photosynthesis, the process of producing green hydrogen via photoelectrochemical water splitting, requires the development of highly efficient and stable photoelectrodes. However, photoelectrode development is associated with critical challenges. Herein, we develop a reconfiguration strategy for platinum single-atom catalysts anchored on a cupric oxide/copper heterostructure foam to yield a highly active hydrogen evolution reaction. A cupric oxide/copper heterostructure foam fabricated by a simple chemical oxidation process has high carrier accessibility and abundant electrolyte diffusion pathways. Moreover, its catalytic activity is well maintained, which favors hydrogen production. Additionally, inserting platinum single-atom catalysts reduces the number of precious metals required while ensuring catalytic activity. The proposed photoelectrode enables an impressive hydrogen production of 59.2 μmolh−1cm−2 under 1 sun illumination. This study provides a facile strategy to impart an outstanding surface geometry for platinum single-atom catalysts coupled with a cupric oxide/copper heterostructure foam, which can serve as a photocatalyst for accelerating hydrogen evolution reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call