Abstract

The literature on the anti-neoplastic effects of Pt drugs provides substantial evidence that free radical may be involved in the formation of Pt-DNA adducts and other cytotoxic effects. The conditions specific to cancerous tumours are more conducive to free radical mechanisms than the commonly accepted hydrolysis nucleophilic–electrophilic mechanism of Pt-DNA adduct formation. Molecular orbital studies of the adiabatic attachment of hydrated electrons to Pt drugs reveal that there is a significant lengthening of the Pt–X bond (where X is Cl, O in cisplatin, carboplatin and some pyrophosphate-Pt drugs but not oxaliplatin) in the anion radical species. This observation is consistent with a dissociative electron transfer (DET) mechanism for the formation of Pt-DNA adducts. A DET reaction mechanism is proposed for the reaction of Pt drugs with guanine which involves a quasi-inner sphere 2 electron transfer process involving a transient intermediate 5 co-ordinated activated anion radical species {R2Pt---Cl(G)(Cl)•}*− (where R is an ammine group, and G is guanine) and the complex has an elongated Pt---Cl (or Pt---O) bond. A DET mechanism is also proposed when Pt drugs are activated by reaction with free radicals such as HO•, CO3•−, O2•− but do not react with DNA bases to form adducts, but form Pt-protein adducts with proteins such ezrin, FAS, DR5, TNFR1 etc. The DET mechanism may not occur with oxaliplatin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.