Abstract

Previous reports have suggested that the physical properties of cell membranes and calcium homeostasis in both the central and peripheral nervous system are changed in Alzheimer's disease (AD). This study has examined the biophysical properties of erythrocyte and platelet membranes by measuring the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and possible related changes in lipid peroxidation. In addition, we have studied calcium homeostasis by measuring thrombin-stimulated changes in intraplatelet free calcium and Ca 2+-ATPase activity in AD and healthy age and sex-matched controls. Our results show that there was no significant difference in the fluorescence anisotropy of DPH in erythrocyte membranes isolated from the three groups. There was also no significant difference in lipid peroxidation levels in erythrocytes and plasma of AD patients compared to controls. However, there was a significant reduction in the fluorescence anisotropy of DPH in platelet membranes from AD patients, compared with healthy controls. Recent evident suggests that the increase in platelet membrane fluidity results from alterations in internal membranes. We measured the specific activities of enzyme markers associated with intracellular and plasma membranes in platelets from AD patients and healthy controls. There was a significant reduction in the specific activity of antimycin A-insensitive NADH-cytochrome-c reductase (a specific marker for smooth endoplasmic reticulum (SER)), in AD patients compared to controls, but no change in the specific activity of bis(p- nitrophenyl)phosphate phosphodiesterase (a specific marker for plasma membrane). We have also shown that SER mediated [Ca 2+] homeostasis is possibly impaired in AD platelets, i.e., the percentage of thrombin-stimulated increase in intraplatelet [Ca 2+] above basal levels was significantly higher in AD compared to matched controls and there were significant reductions in the specific activities of Ca 2+/Mg 2+-ATPase and Ca 2+-ATPase (but not Mg 2+-ATPase) in AD platelets. Finally electron microscopic analysis of platelets showed that there was a significant increase in the incidence of abnormal membranes in AD patients compared to controls. The ultrastructural abnormalities seem to consist of proliferation of a system of trabeculated cisternae bounded by SER. These results suggest that both SER structure and function might be defected in AD platelets, which could explain the fluidity changes observed here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.