Abstract

This study reported 13 new plastomes from Aeonium and Monanthes, and observed new markers for phylogeny and DNA barcoding, such as novel tRNA structures and codon usage bias and aversion. The Macaronesian clade of Crassulaceae consists of three genera: Aichryson, with about 15 species; Monanthes, with about 10 species; Aeonium, with about 40 species. Within this clade, Aeonium, known as "the botanical equivalent of Darwin's finches", is regarded as an excellent model plant for researching adaptive evolution. Differing from the well-resolved relationships among three genera of the Macaronesian clade, the internal branching patterns within the genus Aeonium are largely unclear. In this study, we first reported 13 new plastomes from genus Aeonium and the closely related genus Monanthes. We further performed comprehensive analyses of the plastomes, with focuses on the secondary structures of pttRNAs and the patterns of codon usage and aversion. With a typical circular and quadripartite structure, the 13 plastomes ranged from 149,900 to 151,030bp in size, and the unique pattern in IR junctions might become a family-specific marker for Crassulaceae species. Surprisingly, the π values of plastomes from Monanthes were almost twice those from Aeonium. Most importantly, we strongly recommend that highly polymorphic regions, novel putative pttRNA structures, patterns of codon usage bias and aversion derived from plastomes might have phylogenetic implications, and could act as new markers for DNA barcoding of plants. The results of phylogenetic analyses strongly supported a clear internal branching pattern in Macaronesian clade (represented by Aeonium and Monanthes), with higher nodal support values. The findings reported here will provide new insights into the variation of pttRNAs, and the patterns of codon usage and aversion of the family Crassulaceae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call