Abstract

PAA2/HMA8 (P-type ATPase of Arabidopsis/Heavy-metal-associated 8) is a thylakoid located copper (Cu)-transporter in Arabidopsis thaliana. In tandem with PAA1/HMA6, which is located in the inner chloroplast envelope, it supplies Cu to plastocyanin (PC), an essential cuproenzyme of the photosynthetic machinery. We investigated whether the chloroplast Cu transporters are affected by Cu addition to the growth media. Immunoblots showed that PAA2 protein abundance decreased significantly and specifically when Cu in the media was increased, while PAA1 remained unaffected. The function of SPL7, the transcriptional regulator of Cu homeostasis, was not required for this regulation of PAA2 protein abundance and Cu addition did not affect PAA2 transcript levels, as determined by qRT-PCR. We used the translational inhibitor cycloheximide to analyze turnover and observed that the stability of the PAA2 protein was decreased in plants grown with elevated Cu. Interestingly, PAA2 protein abundance was significantly increased in paa1 mutants, in which the Cu content in the chloroplast is half of that of the wild-type, due to impaired Cu import into the organelle. In contrast in a pc2 insertion mutant, which has strongly reduced plastocyanin expression, the PAA2 protein levels were low regardless of Cu addition to the growth media. Together, these data indicate that plastid Cu levels control PAA2 stability and that plastocyanin, which is the target of PAA2 mediated Cu delivery in thylakoids, is a major determinant of this regulatory mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.