Abstract
Plasticized cellulose bioplastics with antioxidant and antimicrobial properties were prepared by blending cellulose and glycerol in a mixture of trifluoroacetic acid and trifluoroacetic anhydride, adding a solution of beeswax in chloroform, and subsequent drop-casting. Optical, chemical, structural, mechanical, thermal, and hydrodynamic properties were fully characterized. In addition, the biodegradability in seawater was investigated by determination of the biological oxygen demand. The incorporation of beeswax ruled out the transparency and UV blocking, modified the main mechanical parameters, and improved the thermal stability and the antioxidant capacity, as well as the hydrodynamic and barrier properties. In general, these features were comparable to those of common petroleum-based food packaging plastics. Such changes were explained by the incorporation of beeswax into the polymer matrix, as determined by infrared spectroscopy and X-ray diffraction. These cellulose-beeswax bioplastics were evaluated as viable food packaging materials by determination of the overall migration by using Tenax® as a dry food simulant, oxygen permeability at different relative humidities, measurement of antimicrobial activity against Escherichia coli and Bacillus cereus, and through preservation of fresh-cut pear slices, showing results similar to those obtained by using low-density polyethylene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.