Abstract

Because phytoplankton communities exhibit seasonal patterns driven by changes in physical factors, grazing pressure, and nutrient limitations, climate change, in combination with local phosphorus management policies are expected to impact phytoplankton annual dynamic. We used long-term monitoring data from Lake Geneva (from 1974 to 2010) to test if changes in phytoplankton seasonal succession across years is related to re-oligotrophication, inter-annual variability in thermal conditions, and Daphnia sp. density. We used a Bayesian method to identify species assemblages and wavelet analysis to detect transient dynamics in seasonal periodicity. A decrease in phosphorus concentrations appeared to play a major role in the inter-annual replacement of species assemblages. Furthermore, some species assemblages exhibited a change in their seasonal periodicity that was most likely induced by changes in Daphnia sp. density. Finally, we demonstrated that flexibility in the pattern of phytoplankton seasonal successions played a stabilizing role at the community level. The results suggest that phenology and inter-annual changes in seasonal dynamics of phytoplankton assemblages are important components to consider for explaining long-term variability in phytoplankton community.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.