Abstract

Phytoplankton is the primary producer and the basis of most aquatic food webs. Characterising the variations in phytoplankton communities and the factors affecting these variations in a fluctuating environment are central issues in ecology and essential to developing appropriate conservation strategies. In the present study, seasonal variations in the phytoplankton community and the driving environmental factors were analysed based on data from Lake Nansihu in 2013. In all, 138 phytoplankton species were identified. The phytoplankton community exhibited seasonal variations, with a mean abundance that ranged from 5.00×105 cells L–1 in winter to 4.57×106 cells L–1 in summer and a mean biomass that varied from 0.44mgL–1 in winter to 3.75mgL–1 in summer. A spring algal bloom did not appear in this warm, temperate monsoon lake, but an algal bloom did appear in summer when the temperature and nutrient concentrations were high. There were substantial seasonal variations in the dominant phytoplankton taxa, from Chlorophyta, Bacillariophyta and Euglenophyta in spring to Chlorophyta and Bacillariophyta in summer, followed by dominance of Chlorophyta in autumn and Bacillariophyta in winter. Results of canonical correspondence analysis indicated that although the environmental factors affecting the seasonal variations in different phytoplankton species varied, water temperature, total nitrogen, total phosphorus and ammonia nitrogen appeared to be the most dominant. These four variables were also the main environmental factors driving the seasonal variations in the phytoplankton community in the lake. The results of the present study will be useful in guaranteeing the water quality and ecological security of Lake Nansihu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call