Abstract
To improve the formability of W-rare earth electrode, the influence of high-energy pulse on the plasticity property of W-CeO2 rods was investigated. The effects of current density (J0), pulse width (tw), frequency (f), and strain rate on the plasticity of W-CeO2 rods were discussed in detail. Results of tensile tests show that the W-CeO2 rods applied with the electrical pulses obtain a maximum percentage total elongation at fracture (9.65 %), increased by 118.7 % compared to that without pulses. This is owing to both the heat effect and the interaction of current between dislocations and rare earth additions. Electron back scattered diffraction (EBSD)-generated grain boundary (GB) maps suggest that the length of low-angle grain boundaries composed of high-density dislocations decreases after deformation while applying the pulse current. This demonstrates that the short-duration pulsed current enhances the mobility of dislocations. Scanning electron microscopy (SEM) images of the rods after deformation with the pulse current show that the long fiber-shaped additions become discontinuous, which could reduce the stress concentration and hinder the crack propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.