Abstract

Microplastics in aquatic environments is a growing concern, particularly due to the leaching of chemical additives such as plasticisers. To develop comprehensive environmental risk assessments (ERAs) of high-concern polymers and plasticisers, an understanding of their leachability is required. This work investigated diethylhexyl phthalate (DEHP) and bisphenol A (BPA) leaching from polyvinyl chloride (PVC) microplastics (average diameter = 191 μm) under simulated marine conditions. Leaching behaviours were quantified using gel permeation chromatography (GPC) and thermal gravimetric analysis (TGA), and the polymer's physiochemical properties analysed using differential scanning calorimetry (DSC), Fourier Transform-Infrared Spectroscopy (FT-IR) and optical microscopy. Experimental data were fitted to a diffusion and boundary layer model, which found that BPA leaching was temperature-dependent (diffusion-limited), whereas DEHP leaching was controlled by surface rinsing. Model predictions also highlighted the importance of microplastic size on leaching dynamics. These data contribute towards greater accuracy in ERAs of microplastics, with implications for water quality and waste management, including decommissioning of plastic infrastructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call