Abstract
Atomic force microscopy observations of the free surface of gold thin films deposited on silicon substrates have evidenced the buckling of the films and the formation of blister patterns undergoing plastic folding. The classical elastic buckling and plastic deformation of the films are analyzed in the framework of the Föppl-Von Kármán theory of thin plates introducing the notion of low-angle tilt boundaries and dislocation distributions to describe this folding effect. It is demonstrated that, in agreement with elementary plasticity of bent crystals, the presence of such tilt-boundaries results in the formation of buckling patterns of lower energy than "classical" elastic blisters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have