Abstract

The unique structures of dications increase the number of possible combinations of cations and anions that can be used to obtain new materials with a wide range of physicochemical properties. However, structure-property relationships related to dicationic organic salts are seldom explored. Here, we report the synthesis and characterization of two new dicationic salts, 1,2-bis(N-ethylpyrrolidinium)ethane bis(trifluoromethanesulfonyl)imide ([C2-Pyrr2][TFSI]2) and 1,2-bis(N-n-propylpyrrolidinium)ethane bis(trifluoromethanesulfonyl)imide ([C2-Pyrr3][TFSI]2). To investigate the physicochemical properties of the organic salts, local structure and dynamics were investigated by variable temperature solid-state NMR and correlated with the thermal analysis and ionic conductivity. These studies revealed that [C2-Pyrr3][TFSI]2, with the longer alkyl-side chain on the dication, showed improved transport properties compared to [C2-Pyrr2][TFSI]2. Further exploration of the organic salts as potential electrolyte materials was conducted by mixing with 10 mol% lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). This study demonstrates the effect that lithium salt addition has on thermal and ionic conductivity properties, where the largest increase in conductivity was found for [C2-Pyrr3][TFSI]2/LiTFSI (10 mol% LiTFSI). Solid-state NMR analysis revealed that Li+ and [TFSI]- ions acted as the major contributors to ionic conductivity while the dications in the bulk structure showed lower mobility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call