Abstract

Lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) salt are potentially a good alternative to LiPF 6 since it could both improve the chemical and thermal stability as salt for electrolyte. This work presents a systematic comparative study between LiPF 6 and LiTFSI in a mixture of EC/DMC on the basis of some of their physicochemical properties. Transport properties (viscosity and conductivity) are compared at various temperatures from −20 to 80 °C. Using Walden rule, we have demonstrated that LiTFSI 1 M in EC/DMC is more ionic than LiPF 6 1 M in the same binary solvent. Moreover, the electrochemical storage properties of an activated carbon electrode were investigated in EC/DMC mixture containing LiTFSI or LiPF 6. The specific capacitance C s of activated carbon was determined from the Galvanostatic charge–discharge curve between 2 and 3.7 V, at low current densities. The capacitance values were found to be 100 and 90 F g −1 respectively for LiTFSI and LiPF 6 electrolytes at 2 mA g −1. On the basis of the physicochemical and electrochemical measurements, we have correlated the improvement of the specific capacitance with activated carbon to the increase of the ionicity of the LiTFSI salt in EC/DMC binary system. The drawback concerning the corrosion of aluminium collectors was resolved by adding a few percentage of LiPF 6 (1%) in the binary electrolyte. Finally, we have studied the electrochemical behavior of intercalation–deintercalation of lithium in the graphite electrode with EC/DMC + LiTFSI as electrolyte. Results of this study indicate that the realization of asymmetric graphite/activated carbon supercapacitors with LiFTSI based electrolyte is possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call