Abstract

Current treatments for reversible blindness caused by corneal endothelial cell failure involve replacing the failed endothelium with donor tissue using a one donor-one recipient strategy. Due to the increasing pressure of a worldwide donor cornea shortage there has been considerable interest in developing alternative strategies to treat endothelial disorders using expanded cell replacement therapy. Protocols have been developed which allow successful expansion of endothelial cells in vitro but this approach requires a supporting material that would allow easy transfer of cells to the recipient. We describe the first use of plastic compressed collagen as a highly effective, novel carrier for human corneal endothelial cells. A human corneal endothelial cell line and primary human corneal endothelial cells retained their characteristic cobblestone morphology and expression of tight junction protein ZO-1 and pump protein Na+/K+ ATPase α1 after culture on collagen constructs for up to 14 days. Additionally, ultrastructural analysis suggested a well-integrated endothelial layer with tightly opposed cells and apical microvilli. Plastic compressed collagen is a superior biomaterial in terms of its speed and ease of production and its ability to be manipulated in a clinically relevant manner without breakage. This method provides expanded endothelial cells with a substrate that could be suitable for transplantation allowing one donor cornea to potentially treat multiple patients.

Highlights

  • The cornea is our transparent window to the world and its integrity and transparency are essential for proper functioning of the eye

  • There are many advantages to the lamellar techniques over the penetrating keratoplasty (PK) procedure because the corneal surface is not compromised allowing for faster visual recovery, suture related problems are eliminated as endothelial keratoplasty requires no corneal sutures and wound healing complications are rare as the procedure can be performed through a self-sealing limbal or scleral tunnel incision at the periphery of the cornea [2,3]

  • Real Architecture For 3D Tissues (RAFT) could be successfully loaded into the Tan EndoGlideTM system (Fig. 2A–C), curling inwards in the intended manner that would protect the endothelial layer as it does for Descemet’s membrane endothelial keratoplasty (DMEK) (Fig. 2D)

Read more

Summary

Introduction

The cornea is our transparent window to the world and its integrity and transparency are essential for proper functioning of the eye. The corneal endothelial layer is responsible for the maintenance of corneal transparency by acting as a ‘‘leaky’’ barrier to allow nutrients to flow from the aqueous humour in the anterior chamber into the collagen stroma and preventing swelling by actively pumping excess fluid out. This state of equilibrium is lost in disorders such as Fuchs endothelial dystrophy, which is characterised by a progressive oedema of the cornea, due to a loss of endothelial cell density. There are many advantages to the lamellar techniques over the PK procedure because the corneal surface is not compromised allowing for faster visual recovery, suture related problems are eliminated as endothelial keratoplasty requires no corneal sutures and wound healing complications are rare as the procedure can be performed through a self-sealing limbal or scleral tunnel incision at the periphery of the cornea [2,3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.