Abstract

Autumn-collected flies of Himalayan Drosophila nepalensis differ in body color phenotypes (males more melanized relative to females) and in their behavior (males abundant in the open sites vs. shelters-seeking females). In contrast, winter-collected flies of both sexes are equally melanized and abundant in the open sites. We tested developmental and adult plasticity changes in cold or drought tolerance in D. nepalensis flies reared under winter or autumn simulated conditions. In D. nepalensis flies reared at 21 °C, male flies were more cold tolerant (as shown by shorter chill-coma recovery time and lower cold-shock mortality). Further, male flies also exhibited greater drought tolerance (increased levels of desiccation resistance, cuticular lipid mass, melanization, hydration level, and dehydration tolerance) as compared to females. We observed sex-specific differences in the adult plasticity responses due to rapid cold or drought hardening (RCH or RDH); and for the persistence of cold acclimation effects. RCH or RDH-induced changes in the level of proline accumulations are negatively correlated with a decrease in the chill-coma recovery time. Therefore, cold or drought hardening treatments are likely to influence cold tolerance through proline accumulation. Developmental acclimation and adult hardening responses revealed significant interaction effects between sexes and thermal treatments. Thus, sex-specific differences in morphological traits (body melanization and cuticular lipid mass) and physiological traits (adult plasticity changes in cold tolerance and proline accumulation) correlate with behavioral divergence (habitat usage) across sexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.