Abstract
The compressive properties of metal-organic framework (MOF) crystals are not only crucial for their densification process but also key in determining their performance in many applications. We herein investigated the mechanical responses of a classic crystalline MOF, HKUST-1, using in situ compression tests. A serrated flow accompanied by the unique strain avalanches was found in individual and contacting crystals before their final flattening or fracture with splitting cracks. The plastic flow with serrations is ascribed to the dynamic phase mixing due to the progressive and irreversible local phase transition in HKUST-1 crystals, as revealed by molecular dynamics and finite element simulations. Such pressure-induced phase coexistence in HKUST-1 crystals also induces a significant loading-history dependence of their Young's modulus. The observation of plastic avalanches in HKUST-1 crystals here not only expands our current understanding of the plasticity of MOF crystals but also unveils a novel mechanism for the avalanches and plastic flow in crystal plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.