Abstract

Recently it has been discovered that positronium (Ps), after forming in metal-organic framework (MOF) crystals, is emitted into vacuum with a high efficiency and low energy that can only be explained by its propagating as delocalized Bloch states. We show that the Ps atoms are emitted from MOFs in a series of narrow energy peaks consistent with Ps at Bloch-state energy minima being emitted adiabatically into the vacuum. This implies that the Ps emission energy spectra can be directly compared with calculations to obtain detailed information about the Ps band structure in the MOF crystal. The narrow energy width of the lowest energy Ps peak from one MOF sample (2-Methylimidazole zinc salt ZIF-8) suggests it originates from a polaronic Ps surface state. Other peaks can be assigned to Ps with an effective mass of about twice that of bare Ps. Given the immense catalog of available MOF crystals, it should be possible to tune the Ps properties to make vastly improved sources with high production efficiency and a narrow energy spread, for use in fundamental physics experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.