Abstract

Material characterizations for plasticity and fracture have been conducted from uniaxial tensile tests, bi-axial bulge test, and disk compression test for a beverage can AA3104-H19 material. The results from the experimental tests are used to determine material coefficients for the Yld2004-18p model (Barlat et al., 2005). Finite element simulations are developed to evaluate the predicted earing profile. It is shown that the Yld2004-18p model is capable of accurately predicting the complex earing profile. Excellent agreement with the experimental data for eight ears exhibited in AA3014-H19 is achieved using the Yld2004-18p constitutive model. Further mechanical tests are also conducted on the AA3104-H19 to generate fracture data under different stress triaxiality conditions. Tensile tests are performed on the samples with a central hole and notched specimens to achieve tensile and plane-strain conditions. A specially designed torsion test of a double bridge specimen is conducted to generate the points near pure shear conditions. The Nakajima test is also utilized to produce a bi-axial tension condition. The data from the experiments is used to generate the fracture locus in the principal strain space. Mapping from the principal strain space to stress triaxiality space, principal stress space, and Polar Effective Plastic Strain (PEPS) space is accomplished for a general yield function. Finite element modeling is used to validate the fracture diagram in the polar space. A model of a hole expansion during cup drawing demonstrates the robustness of the PEPS fracture theory for a condition with a highly anisotropic material and accurately predicts the direction for onset of failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.