Abstract

BackgroundAnterior cruciate ligament (ACL) rupture is a common orthopedic injury, occurring in roughly 68.6 per 100,000 persons annually, with the primary treatment option being ACL reconstruction. However, debate remains about the appropriate graft type for restoring the native biomechanical properties of the knee. Furthermore, plastic graft elongation may promote increased knee laxity and instability without rupture. This study aims to investigate the plastic properties of common ACL-R graft options.MethodsPatellar tendon (PT), hamstring tendon (HT), and quadriceps tendon (QT) grafts were harvested from 11 cadaveric knees (6 male and 5 female) with a mean age of 71(range 55–81). All grafts were mechanically tested under uniaxial tension until failure to determine each graft’s elastic and plastic biomechanical properties.ResultsMechanically, the QT graft was the weakest, exhibiting the lowest failure force and the lowest failure stress (QT < HT, p = 0.032). The PT was the stiffest of the grafts, having a significantly higher stiffness (PT > QT, p = 0.0002) and Young’s modulus (PT > QT, p = 0.001; PT > HT, p = 0.041). The HT graft had the highest plastic elongation at 4.01 ± 1.32 mm (HT > PT, p = 0.002). The post-yield behavior of the HT tendon shows increased energy storage capabilities with the highest plastic energy storage (HT > QT, p = 0.012) and the highest toughness (HT > QT, p = 0.032).ConclusionOur study agrees with prior studies indicating that the failure load of all grafts is above the requirements for everyday activities. However, grafts may be susceptible to yielding before failure during daily activities. This may result in the eventual loss of functionality for the neo-ACL, resulting in increased knee laxity and instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call