Abstract

Abstract The phenomena that lead to modifications of polyimide, polycarbonate and polyparaphenylene irradiated by an ion beam in the 100 keV energy range are studied. A model of energy transfer based on plasmon-like collective effects occurring during the physical stage of the ion-polymer interaction, previously implemented for poly(methyl methacrylate) and cellulosic derivatives, is extended to these polymers. In the framework of this model, we carry out quantum-chemical calculations of the valence-band density of electronic states. The resulting theoretical spectrum is then compared with the experimental plasmon line obtained by electron-energy-loss spectrometry. This approach sheds light on the selective bond cleavages induced by the energy transfer at the primary physical step of the ion-polymer interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call