Abstract

The dynamical and nonlocal dielectric function of a two-dimensional electron gas (2DEG) with finite energy bandwidth is computed within random-phase approximation. For large bandwidth, the plasmon dispersion has two separate branches at small and large momenta. The large momenta branch exhibits negative quasi-flat dispersion. The two branches merge with decreasing bandwidth. We discuss how the maximum energy plasmon mode which resides at energies larger than all particle-hole continuum can potentially open a route to low-loss plasmons. Moreover, we discuss the bandwidth effects on the static screening of the charged and magnetic impurities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.