Abstract
We propose, simulate, and achieve a method of realization of all-optical reversible logic gates based on nanoring dielectric-metal-dielectric plasmonic waveguides at 1550 nm and in the same structure. Finite-element method was used to study and simulate the proposed plasmonic reversible logic gates. These reversible logic gates are wire, NOT, swap, and Feynman. The working principle of the proposed reversible gates is based on the interferences (destructive or constructive) between the light that propagates in the input signal port(s) and control signal port(s). The threshold value of transmission between OFF and ON states is proposed as 0.4. Finally, the designed area of the proposed structure is very small (300 nm × 460 nm). These plasmonic reversible gates can contribute in construction of nanophotonic reversible logic circuits and all-optical quantum computing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.