Abstract

Light-induced energy confinement in nanoclusters via plasmon excitations influences applications in nanophotonics, photocatalysis, and the design of controlled slow electron sources. The resonant decay of these excitations through the cluster's ionization continuum provides a unique probe of the collective electronic behavior. However, the transfer of a part of this decay amplitude to the continuum of a second conjugated cluster may offer control and efficacy in sharing the energy nonlocally to instigate remote collective events. With the example of a spherically nested dimer Na_{20}@C_{240} of two plasmonic systems we find that such a transfer is possible through the resonant intercluster Coulombic decay (RICD) as a fundamental process. This plasmonic RICD signal can be experimentally detected by the photoelectron velocity map imaging technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call