Abstract

Cryogenic quantum applications have a demand for an ever-higher number of interconnects and bandwidth. Photonic links are foreseen to offer data transfer with high bandwidth, low heat load, and low noise to enable the next-generation scalable quantum computing systems. However, they require high-speed and energy-efficient modulators operating at cryogenic temperatures for electro-optic signal conversion. Here, plasmonic organic electro-optic modulators operating at 4 K are demonstrated with a >100 GHz bandwidth, drive voltages as low as 96 mV, and a significant reduction in plasmonic propagation losses by over 40% compared to room temperature. Up to 160 Gbit/s and 256 Gbit/s cryogenic electro-optic signal conversion are demonstrated by performing data experiments using a plasmonic Mach-Zehnder modulator at around 1528 nm and a plasmonic ring-resonator modulator at around 1285 nm, respectively. This work shows that plasmonic modulators are ideally suited for future high-speed, scalable, and energy-efficient photonic interconnects in cryogenic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.