Abstract

We investigate the plasmonic lattice solitons (PLSs) in nonlinear graphene sheet arrays (GSAs) composed of spatially separated graphene sheets embedded in dielectric. Both the nonlinearities of graphene and dielectric are considered. The self-focusing PLSs at the Brillouin zone edges can be yielded by balancing the normal diffraction of surface plasmon polaritons (SPPs) via either the nonlinear effect of graphene or self-focusing dielectric. The self-defocusing PLSs corresponding to anomalous diffraction of SPPs at the Brillouin zone center could be yielded by the nonlinearity of self-defocusing dielectric alone. The width and propagation distance of the PLSs are dependent on the period of the GSAs and the chemical potential of graphene. Thanks to the strong confinement of SPPs, the PLSs in GSAs can be squeezed into an effective width as small as λ/250. The study may find applications in optical circuits and switches on deep-subwavelength scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call