Abstract
A scalable procedure of SERS substrates design was developed using a novel plasmonic structure based on a freestanding chitosan film, silver nanoparticles, and graphene oxide. Chitosan provides a uniform distribution of silver nanoparticles from a colloidal suspension and, therefore, a reproducible Raman signal from local areas of measurements of several tens of microns. The addition of graphene oxide (GO) to the colloidal solution of silver nanoparticles suppresses the tortuous background fluorescence signal from the analyte and leads to an increase in the signal-to-fluorescence background intensity ratio by up to 6 times as compared to structures without GO. The manufactured plasmonic polymer nanocomposite provides a detection limit of down to 100 pM for R6G using a laser wavelength of 532 nm through a portable ×10 objective. The high colloidal stability of GO in water and the use of an aqueous colloid of silver nanoparticles simplify the procedure for creating a substrate by applying the GO-silver composite on the surface of a chitosan film without a need to form a GO film. Therefore, our approach paves a promising avenue to provide more sensitive detection even for the fluorescent analytes with short-wavelength lasers (532, 633 nm) instead of IR (785, 1024 nm) and foster the practical application of the developed plasmonic composites on portable Raman spectrometers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.